
Author Thiébaud Modoux

Reviewer Ilia Kebets (v3)

Date 08.05.2019

Version 4

Pryv.io emails
Install and conGgure the sending of emails

Summary
Pryv.io allows to send emails in two situations:

• Account creation
• Password reset requests

This document will guide you through the conGguration of the sending of these emails.

This requires a basic understanding of SMTP servers, SPF records and DNS zone settings.

This document covers:

1. How to conGgure Pryv.io core(s) to send welcome or password reset emails
1. Using Mandrill
2. Using the Pryv.io mail microservice

2. How to install and conGgure the Pryv.io mail microservice
1. Installation and deployment variants
2. ConGguration

3. How to set the right SPF records for the Pryv.io associated domain

This document does not cover:

• How to obtain or build the SPF record for your domain
• How to set the SPF record on a domain other than the one used by your Pryv.io platform

1 / 8

1. Configure Pryv.io core(s) to send
welcome or password reset emails
1.1. Using Mandrill

As a Grst solution, you can use the Mandrill email API.

The cores' conGguration Gle should contain the following:

core/core/conf/core.json

"services": {
...
"email": {

"enabled": {
"welcome": true,
"resetPassword": true

},
"method": "mandrill",
"url": "https://mandrillapp.com/api/1.0/messages/send-template.json",
"key": ${apiKey},
"welcomeTemplate": "welcome-email",
"resetPasswordTemplate": "reset-password"

}
}

Notes:

• Replace ${apiKey} with the API key of your own Mandrill account.
• The templates names (welcome-email, reset-password) have to correspond to templates you have

created within your Mandrill account.
• The enabled Hags allow to enable/disable granularly the sending of emails according to their type.
• For now, the Pryv.io integration with Mailchimp does not support languages.
• WARNING: this solution may not be compliant with privacy regulations.

The Mandrill conGguration will require you to set a SPF record in the DNS zone of the domain you wish to use
to send those emails. See the 3. SPF records section for details about these records.

If you choose to use Mandrill, no further conGguration is needed, so you can skip the rest of this document.

1.2. Using the Pryv.io mail microservice

A second solution is to use the Pryv.io generic and containerized mail microservice.

This microservice will either send emails using a SMTP server under your control or using its internal sendmail
binary, as explained in the 2.2. ConGguration section.

It uses customizable email templates, which can be written in different languages, such as HTML or pug.

2 / 8

The cores' conGguration Gle should contain the following:

core/core/conf/core.json

"services": {
...
"email": {

"enabled": {
"welcome": true,
"resetPassword": true

},
"method": "microservice",
"url": ${microserviceUrl},
"key": ${sharedKey},
"welcomeTemplate": "welcome-email",
"resetPasswordTemplate": "reset-password"

}
}

Notes:

• Replace ${sharedKey} with a symmetric key that will also be set within the mail microservice (as
shown in the 2.2. ConGguration/HTTP section).

• The templates names (welcome-email, reset-password) have to correspond to template folders that
exist in the mail microservice.

• The ${microserviceUrl} is the URL on which the mail microservice is receiving mailing requests, so it
depends on your deployment choice. See the section below to complete the conGguration.

2. Install and configure the Pryv.io mail
microservice
2.1. Installation and deployment variants

The Pryv.io dockerized mail microservice can be deployed according to various infrastructure setups.

In this section, we present three suggested deployment variants. You can adapt and combine these setups,
see the Deployment variants chapter below.

We recommend to deploy the microservice on a different machine than the core to avoid giving an access to
the personal data to the people working on the templates.

Microservice URL
We suggest to deGne a TYPE A entry in the Pryv.io DNS pointing to the machine where the microservice is
deployed, thus using https://mail.${DOMAIN} as microserviceUrl.

As explained in the DNS conGguration document, this is done by adding the following entry:

reg-master/dns/conf/dns.json

"dns": {

3 / 8

https://api.pryv.com/customer-resources/#documents

...
"staticDataInDomain": {

...
"mail": {

"ip": "${MAIL_SERVICE_MACHINE_IP_ADDRESS}"
}

}
}

Variant 1: Host on the same machine as register
The Grst suggestion is to deploy the mail microservice on the master register machine. This is the variant we
recommend, so you can Gnd a complete example in our template cluster conGguration.

First, add the mail Docker image to register's DockerGle:

reg-master.yml

mail:
image: "pryvsa-docker-release.bintray.io/pryv/mail:1.1.3"
networks:

- frontend
volumes:

- ./reg-master/mail/conf/:/app/conf/:ro
- ./reg-master/mail/templates/:/app/bin/templates/:ro

restart: always

Notes:

• The mail conGguration Gle is located in /reg-master/mail/conf/mail.json.
• The template folders and Gles are located in /reg-master/mail/templates/.
• See the 2.2. ConGguration section below for more details about conGguring the service.

Then, in each core's conGguration Gle, replace the ${microserviceUrl} as follows:

core/core/conf/core.json

"services": {
...
"email": {

...
"url": "https://mail.${DOMAIN}/sendmail/",

}
}

You will need to add the following in the register's NGINX conGg Gle:

reg-master/nginx/conf/site.conf

upstream mail_server {
server mail:9000;

}

Mail server
server {

listen 443 ssl;
server_name mail.${DOMAIN};
access_log /app/log/mail.log;

client_max_body_size 5M;

location /sendmail/ {

4 / 8

proxy_pass http://mail_server;
}

}

Pros:

• No additional machine is required
• SSL termination is available
• Template updates do not require access to sensitive user data

Cons: Template updates require access to the register machine

Variant 2: Host on an external machine
The mail microservice can also be deployed on a machine external to Pryv.io. This setup is similar to the
register one and requires a NGINX container for SSL termination.

Pro: Template updates can occur without giving access to any user data

Cons: Requires an additional machine

Variant 3: Single-node deployment
This is not recommended outside of development environments. Thus said, you can Gnd a complete example
in our single node template conGguration.

You need to add the mail service in the docker-compose pryv.yml Gle as done in the other variants.

The difference here is that core does not require to send the requests passing through the public internet and
can do it locally.

Then, in core's conGguration Gle, replace the ${microserviceUrl} as follows:

pryv/core/conf/core.json

"services": {
...
"email": {

...
"url": "http://mail:9000/sendmail/",

}
}

Pro: No need of additional machine

Cons: Template updates require access to the single Pryv.io machine, which contains sensitive user data

Deployment variants in details
Here are some criteria for choosing the right setup for your deployment of the Pryv.io mail microservice:

• Mail templates are located on the storage of servers operating the microservice. To modify the
templates, a procedure of publication should be put in place. In some situations, access to servers
such as service-core or service-register might be too sensitive and requires the mail microservice to
be deployed on a separate server.

5 / 8

• Codes enabling reset of passwords will transit by the mail microservice. This is considered as very
sensitive information. You might want to lower the risk of exposure by having the mail microservice
installed on a closed loop or directly on service-core(s) (this is also a possible reason for prefering the
mail microservice over Mandrill).

• Limiting the number of machines deployed is also a factor of choice. Thus using the same machine
as the one hosting service-register could be a good option for some installations.

This can lead to the following setup options (changing from one option to another is possible):

1. Single separate mail server
◦ Pro: 1 single place with all the templates and conGned access
◦ Cons: 1 more machine, 1 single point with all the reset codes transit, requires SSL

termination set-up
2. Deploy within register (simplest)

◦ Pro: 1 single place with all the templates, SSL termination is ready
◦ Cons: 1 single point with all the reset codes transit, a procedure to update templates on the

external machine (register) should be established
3. Using separated servers on the same network

◦ Pro: conGned access to templates
◦ Cons: N more machines, requires SSL termination set-up

4. Deploy within cores
◦ Pro: SSL termination ready
◦ Cons: a procedure to update templates on sensitive machines (cores) should be established

2.2. Configuration

The Pryv.io mail microservice can be conGgured by providing a conGguration Gle (.json, .hjson or .yaml)
containing settings that we explain below.

Templates
Templates consist of pug Gles, arranged into folders according to email types and langage codes, such as:

/mail
└─── /templates

|
└─── /welcome-email
| └─── /en
| | html.pug
| | subject.pug
| └─── /fr
| html.pug
| subject.pug
|
└─── /reset-password

└─── /en
| html.pug
| subject.pug
└─── /fr

html.pug
subject.pug

6 / 8

https://pugjs.org/api/getting-started.html

The default root folder for templates can be changed by providing templates.root.

If the template for the requested language does not exist, the service will try to Gnd another template for the
same email type but with a default language (e.g. english instead of french). The default language can be
deGned in conGguration by providing templates.defaultLang.

Transport
The Pryv.io mail microservice allows to deGne two types of transport: SMTP or sendmail command.

SMTP
SMTP transport is used by default, it allows to deGne an external mail delivery service through conGguration:

• smtp.host: SMTP host (e.g. smtp.ethereal.email)
• smtp.port: SMTP port (e.g. 587)
• smtp.auth.user, smtp.auth.pass: credentials to authenticate against an external mail service (e.g.

sendgrid)

Sendmail
An alternative is to use the sendmail command, which is installed within the mail microservice container.

It has to be explicitly activated through conGguration:

• sendmail.active: true

HTTP
Within the HTTP parameters, we deGne the IP address and port on which the mailing server will be listening.

Also, we set here the ${sharedKey} we previously deGned during the core conGguration.

• http.ip: 0.0.0.0 (docker container localhost)
• http.port: 9000
• http.auth: ${sharedKey}

Full settings
Here is a sample conGguration that shows all available settings alongside with some explanation:

mail/conf/mail.json

{
// Logging settings
logs: {

prefix: '',
console: { active: true, level: 'info', colorize: true },
file: { active: false },

},
email: {

message: {
// Sender name and email address
from: {

name: "Ethereal Email",

7 / 8

address: "btvryvs5al5mjpa3@ethereal.email"
}

}
},
// By default, the the mail microservice will use SMTP as transport
smtp: {

// SMTP host of the external email delivery service
host: "smtp.ethereal.email",
// SMTP port
port: 587,
// Credentials to authenticate against SMTP server
auth: {

user: "btvryvs5al5mjpa3@ethereal.email",
pass: "VfNxJctkjrURkyThZr"

}
},
// Alternative transport, using the sendmail command of the machine
sendmail: {

// Sendmail transport takes precedence over SMTP transport if both are set to true
active: false,
// Default location where the sendmail command is installed,
// within the mail microservice container
path: '/usr/sbin/sendmail'

},
http: {

// IP address on which the mailing server is listening
ip: "0.0.0.0",
// Port on which the mailing server is listening
port: 9000,
// Each sendmail request should contain authorization header
// that matches this key (used to prevent abuse).
auth: "CHANGEME",

},
templates: {

// Root folder where the templates are stored,
// mounted as volume within the container
root: '/templates/',
// Default language for templates
defaultLang: 'en'

}
}

3. SPF records for the Pryv.io domain
SMTP servers use SPF records to help prevent email spooGng. In order to send an email on behalf of a certain
domain, you will need to add the SPF record associated with your SMTP server to your domain's DNS zone.

If you choose to use domain associated with your Pryv.io platform, you should add a SPF record similar to this
one:

@ 10800 IN TXT "v=spf1 include:spf.mandrillapp.com ~all"

In the SPF record above, we declared that Mandrill can be used to send emails on behalf of the domain of our
Pryv.io platform. You can of course replace Mandrill by the SPF address of the SMTP host(s) of your choice.

Please refer to the DNS conGguration document on how to set such SPF record in the Pryv.io DNS.

8 / 8

https://api.pryv.com/customer-resources/#documents

	Summary
	This document covers:
	This document does not cover:

	1. Configure Pryv.io core(s) to send welcome or password reset emails
	1.1. Using Mandrill
	1.2. Using the Pryv.io mail microservice

	2. Install and configure the Pryv.io mail microservice
	2.1. Installation and deployment variants
	Microservice URL
	Variant 1: Host on the same machine as register
	Variant 2: Host on an external machine
	Variant 3: Single-node deployment
	Deployment variants in details

	2.2. Configuration
	Templates
	Transport
	SMTP
	Sendmail

	HTTP
	Full settings

	3. SPF records for the Pryv.io domain

